
Supplement to the book

“Advanced Scratch Programming”

(Author: Abhay B. Joshi)

Review of Computer Science and Scratch Concepts

Introduction
The projects covered in the book “Advanced Scratch Programming” by Abhay B. Joshi are all

based on the CS and Scratch concepts listed below. I assume that you are already familiar with

these concepts. If not, or if you want to brush up on these concepts, please refer to the brief

description of each concept provided in this appendix. This is NOT a rigorous and

comprehensive explanation of concepts, but only a quick summary.

The Internet is replete with study material, videos, and online courses on Scratch programming

and Computer Science. I have listed below a few general Internet-based references that you

could use to study Scratch and CS concepts in more detail.

Scratch Offline Editor:

This editor itself offers help on every feature of Scratch. Click on the “?” symbol in the upper

right corner to open this help. You will find step-by-step tutorials, how-to guides, and

explanation of every command block of Scratch.

Scratch Website (scratch.mit.edu):

This website is an authentic source of information related to Scratch. Click on the “Help” button

to access user guides, frequently asked questions, help with scripts, and video tutorials.

ScratchEd Website (scratched.gse.harvard.edu):

This website is an online community for educators and it offers stories, discussions, and

resources such as the Scratch curriculum guide.

Scratch Wiki Website (wiki.scratch.mit.edu):

This website contains a wide variety of articles by Scratchers for Scratchers, including advanced

topics and tutorials.

YouTube videos:

There are literally hundreds of YouTube videos that you can view to understand basic concepts

of Scratch. On the YouTube website, search for “Scratch programming” to get a list of useful

videos.

Now, let’s take a summary view of each concept individually.

Algorithms
An algorithm is a step-by-step procedure that describes how a certain task can be performed.

Strictly speaking, an algorithm has a formal structure (sometimes called the pseudo-code), which

includes the initial and final states of the procedure, description of all inputs and the output,

and so on. But, for the purpose of the programming projects in this book, we use algorithms

rather loosely to create an informal high-level description of program steps, and help us in the

process of creating the final Scratch scripts.

Here is an example:

Algorithm to make a rainfall:

Resulting Scratch script:

Arithmetic operators (+, -, *, /) and expressions:
In the operators tab of Scratch, you will find the arithmetic operators:

All of us know these operators.

They can be used to create complex arithmetic expressions, such as,

(20 + 3) x 5

(A – B) – ((C + D) / 10) where A, B, C, D are variables.

Equivalent Scratch expressions for these are shown below:

Arithmetic operators:
Scratch comes with several arithmetic operators other than the basic ones (discussed above).

They are listed at the bottom of the “operators” tab of Scratch.

We will discuss a few of them here, especially those that we have used in our projects in this

book.

Backdrops – multiple:
The Scratch stage can have multiple backdrops. There are a number of ways to create a new

backdrop:

- Choose from the Scratch library

- Paint using the paint editor

- Upload an image from your computer

- Take a photo using your camera

Once you have multiple backdrops, either the stage or any of the sprites can change the

backdrop any time using one of the following commands (listed under the “Looks” tab):

The stage can also use the following command to change backdrops:

Concurrency - running scripts in parallel
Concurrency basically means doing many actions at the same time. People like you and me are

doing multiple things at the same time, all the time! For example, when we take a walk, we

listen to music or talk on the phone, watch for road signs and so on. All these actions happen

concurrently.

Here is a simple example:

We have two scripts for the same sprite. The first script makes the sprite move around the

screen. And the second script changes its costume every second.

Now, because both the scripts start with the same signal, which is, “Green Flag clicked”, the

sprite will appear as if it is performing both these actions – moving and changing costumes – at

the same time, that is, concurrently.

Concurrency - race condition
Race condition is the result of a slight misunderstanding about how concurrency works. The

scripts that run in parallel don’t really run “simultaneously”; the CPU runs a little bit of each

script at a time and runs them one after the other. Because this “little bit” is a really tiny portion

of the task and because the CPU runs really fast, we get the impression that things are

happening simultaneously.

One good example of race condition in Scratch is when two sprites try to sense touch with each

other. In the program below, when the cat touches the mouse, the mouse disappears (it is

eaten!) and the cat grunts with satisfaction!

Cat sprite’s script:

Mouse sprite’s script:

If the cat’s script senses the touch first, there is a good chance that mouse will also sense it. But,

if the mouse’s script senses the touch first, it will hide immediately and it is possible that by the

time the cat’s script checks the condition it will likely miss the touch because the mouse is now

invisible.

To avoid such race conditions, it is best to have only one sprite do the sensing. It could then

send a message to the other sprite.

Conditionals (IF)
In Computer Science there is a special type of question called the TRUE-FALSE question. In this

type the answer can only be either TRUE or FALSE. For example, “Is it raining?” Or, “Are you

going home?” Or, “Is 25 a square of 5?” The answer to all these questions is either TRUE or

FALSE. There is no other possible answer.

These questions are known as CONDITIONS in programming.

Scratch provides many such conditional questions and they are shown as diamond blocks. If

you look under the SENSING tab, you will see several conditions. TOUCHING is a condition

which basically is the question “Am I touching so and so?” There is another diamond block

called TOUCHING COLOR which is the question “Am I touching this color?” Under

OPERATORS there are diamond blocks that compare numbers.

In real life, we use the TRUE-FALSE questions to take some action. For example, if the answer

to the question “Is it raining?” is TRUE (or YES), we might decide to take the umbrella to

school.

Similarly, in Scratch we have a command called IF that we can use if a condition is TRUE. In the

example shown below, if the sprite is TOUCHING a sprite called FIRE, the sprite will say

“Help! Help!” and then back off by 100 steps.

Conditionals (IF-Else)
This is a variation of the IF command described above. See this example:

The condition in the above command is: “Is the temperature greater than 30?” If the answer is

YES, the sprite says, “It’s too hot!” If the answer is NO, the sprite says, “It’s not so hot …”

So, the IF-Else command offers a fork in the process of decision-making.

Conditionals (Wait until)
Conditions, i.e. questions that only require a binary answer (yes/no, true/false), are used by

another command in Scratch as shown in the example below.

Sometimes in our programs, we want a sprite to just wait for some condition to become true.

For example, here is a program in which a “prize” sprite is just sitting to be eaten by the pacman

sprite. When pacman touches the prize, it is supposed to disappear.

WAIT UNTIL simply waits as long as the CONDITION is false. As soon as the condition

becomes true, it stops waiting and the script moves to the next command.

Conditionals (nested IF)
The IF (and the IF-Else) command can be used in many variations. One variation called “nested

IF” is shown below. Nested IF means having one IF command inside another.

Costumes
Animation, as you know, is an illusion of action or motion. We can make pictures of people,

animals, and even things appear alive by making them do things.

Motion is one way to create animation. But, there is one shortcoming in that. Motion commands

make the whole sprite move. You cannot move its parts. There is no change of expression or

anything like that.

Animation is basically a trick played on our eyes. When we see a succession of slightly changing

pictures rapidly one after the other, for example, the pictures of a hand moving up, our eyes

think that we actually saw a hand moving up!

In Scratch this series of pictures is called costumes. Every sprite can line up its costumes in the

“Costumes” tab. Several Scratch sprites come with a few costumes of their own. In addition,

you can draw costumes using the Paint editor, or you can simply import images from outside.

You can also use a camera if your computer has one.

We use the following commands to actually use these costumes to create animation.

The “next costume” command will make the sprite change its appearance and look like the next

costume in its list of costumes. When it reaches the end of the list it goes back to the first

costume in the list.

The command “switch to costume” allows the sprite to change to any costume in the list. This is

handy when you don’t have an orderly series of costumes, but a set of costumes that your sprite

wants to use in no particular order.

Events
Events are outside happenings that create some sort of a signal. For example, the “ringing of a

phone” is an event that tells us that someone is calling. “Traffic light turning red” is an event

that signals that cars need to stop. Real world is full of events. Following are some of the

commonly used events in Scratch:

Every sprite in your program will have scripts to respond to the events that that sprite is

interested in. For example, the ball sprite in a game responds to the “when up arrow key

pressed” event by moving up a little as shown below:

Events - coordinating multiple user events
This is not really a basic CS concept but a specialized idea. Sometimes you need to respond to a

“combination” of events rather than to a single event. Here is an example:

In our “Tower of Hanoi” program, the user needs to move discs from one stack to another. For

this, he/she needs to specify the source and destination stacks. And let’s say we want to use the

“when sprite clicked” event to point out the stacks. Obviously a single click won’t be enough;

we will need to coordinate multiple events (two in this case).

When the user clicks on a rod, the rod has no way to know whether it is the “source” or the

“destination”. It all depends on which rod was clicked first.

We can achieve this coordination by guiding the user through the process. We will prompt the

user that he/she should click on a rod to pick the source, and then click on another rod to pick

the destination.

We will use a separate sprite called “prompt” that will display these prompts by changing

costumes. First, when a disc move is requested (by pressing SPACE BAR), this sprite will show

the prompt “Click on the source rod”. As soon as the user clicks on a rod, that rod’s name will

be recorded in a variable. The “prompt” sprite will then change its costume to say “Click on the

destination rod”. As soon as the user clicks on a second rod, that rod’s name will be recorded in

another variable. The “prompt” sprite will then change to a blank costume since the move is

complete. It will also send out a broadcast to signal that the event combination is over.

Logic operators (AND, OR, NOT)
Conditions, i.e. Boolean questions that return yes/no or true/false, can be combined using these

logic operators. For example, in the script below, the sprite will say “You lost!” only if it is

touching the purple color AND if the score is less than 50.

The best way to understand how the logic operators work is to construct truth tables.

The AND operator

Condition 1 Condition 2 Combined effect (output)

False

False

True

True

False

True

False

True

False

False

False

True

As you can see, the output is true only when both conditions are true.

The OR operator

Condition 1 Condition 2 Combined effect (output)

False

False

True

True

False

True

False

True

False

True

True

True

As you can see, the output is true when at least one condition is true.

The NOT operator

Condition Combined effect (output)

False

True

True

False

As you can see, the output is the exact opposite of the input.

Looping - simple (repeat, forever)
Looping (also known as iteration) is the repetition of a sequence of commands. The “repeat” and

“forever” commands in Scratch allow simple looping:

Looping - nested
Nesting means having one loop inside another. See the example below:

The inside repeat loop draws a square, and the outside loop calls this square loop and then

turns the sprite slightly. The result is a nice-looking flower of squares. Thus, nesting of loops

can open up interesting opportunities.

Looping - conditional (repeat until)
In the simple looping covered above (Repeat and Forever), the repeat count is fixed beforehand.

But, many times we may want to terminate the repetition based on a condition. For example,

see the script below:

In this script, we want the user to enter his/her age. But, what if he/she enters a negative

number? In order to ensure the age is a positive number, we need to continue asking the same

question to the user until the user enters it correctly. “Repeat until” does exactly that: it asks the

same question until age > 0.

Motion – absolute
Absolute motion refers to motion whose result does not depend on your current position and

direction. For example, “Going to Washington DC” is absolute motion because you will end up

in Washington DC no matter where you currently are.

The following example Scratch commands describe absolute motion because the resulting

position or direction does not depend on the sprite’s previous position or direction.

Motion – relative
In contrast to absolute motion, relative motion depends on your current position and direction.

For example, “Turn right” is relative motion because the resulting direction depends on your

current direction.

The following example Scratch commands describe relative motion because the resulting

position or direction does depend on the sprite’s previous position or direction.

Motion - smooth using repeat
The Move and Turn commands are abrupt or jumpy in the sense that the sprite jumps to a new

position. The transition is not smooth. So, would make the sprite

jump by 200 steps. But, what if we want the motion to appear smooth?

Looping comes to help! If you break down the total distance into multiple smaller steps and use

Repeat, the motion appears smoother because each move takes a very short finite time.

The above script still moves the sprite the same distance – 200 – but it is split into 100 jumps of 2

steps each. Since each move command takes a short time, 100 jumps would add up that time to

make the motion look smooth. The speed of the motion would depend on the size of each move.

This same idea can be applied in other situations, such as, turning.

Motion - piggyback another object
There are occasions when we want one sprite to simply move along with another sprite. The

two sprites cannot be combined into a single sprite because perhaps they cannot move together

all the time. Think of, for example, an animation containing a horse-rider, who would ride the

horse, but also be separate from the horse some times.

Creating such “piggyback” motion is quite straightforward, as shown below.

The sprite that wants to piggyback (the rider in this case) continuously goes to the other sprite’s

(horse’s) location and uses its direction.

Motion - direction and bouncing
Generally speaking, whenever an object bounces off a flat surface, its incoming angle (with the

surface) is equal to its outgoing angle.

Let’s see how this works in Scratch, where angles of sprites are given by the “direction”

property. A sprite’s direction is measured w.r.t. the North direction. So, if the sprite is facing

north direction equals 0. If it’s facing east, direction equals 90, and so on.

If you observe how the direction property is affected by bouncing, you will notice the following:

1. When a sprite bounces off the left or right edge (of the screen), its direction changes only in

sign. So, 30 becomes -30, -110 becomes 110, and so on. (So, we can simply multiply direction

by -1.)

2. When a sprite bounces off the top or bottom edge, and if its initial direction is A, after

bouncing it becomes 180-A.

So, depending on what type of surface (horizontal or vertical) the sprite is bouncing off, the

calculation of direction would be different.

OOP - creating instances using clones
OOP stands for “object oriented programming”. In OOP, there is a concept of a class, which

defines the characteristics (i.e. its properties and its actions) of a collection of objects, and an

object is an instance of that class. Using this idea, a program can have multiple instances of a

class.

From Scratch’s perspective, every sprite can be viewed as a class which contains its own data

(variables) and methods (scripts). And the idea of creating instances of a class is implemented

using a feature called “clones”. So, clones are basically identical copies of a sprite which exist

only at run-time, that is, they are created by the program and they vanish when the program

stops running.

The following command creates a clone of a sprite:

Clones inherit (copy) all scripts of the parent sprite that begin with an event block (except

“When Green Flag clicked”). In addition, every clone also runs (only once) scripts that start with

this event:

All clones are deleted when you stop the program using the STOP command or by clicking the

STOP button. Each clone may also delete itself using this command:

Since a clone is an identical copy of a sprite, it shares all its methods, but has its own copy of all

its private variables. Each clone also has its own copy of built-in Scratch properties such as,

xposition and yposition.

Pen commands
Every sprite in Scratch has a pen attached to it (at its center) and is able to draw on the

background. The pen commands are listed under the Pen tab and they contain commands to

put the pen down (after which the sprite will start drawing wherever it goes), pen up (after

which the drawing will stop), set pen size, set pen color, and so on.

The actual drawing happens when the sprite moves using the motion commands. Using

cleverly designed scripts, you can draw practically any type of geometric patterns. For example,

the following script draws a thick pentagon:

Procedures
A Scratch instruction consists of a command block that we drag and drop in the script area, and

which is then run by Scratch when we click on it. For example, the following instruction

evaluates the expression 20*30 and shows 600 on the screen.

A Scratch instruction always carries out a specific, well-defined, and repeatable task. If you look

carefully, you will notice that this instruction above contains the keyword “SAY” and the

symbol “*” (for multiplication). Each of these words/symbols is called a Scratch procedure.

A procedure is like a recipe of how to do something. For example, MOVE is a procedure that

knows how to move a sprite.

Scratch allows you to define your own procedures. Go to the “More blocks” tab and click on

“Make a block”. The following picture shows that I am creating a new procedure called

“Greeting”.

When you click Ok, you see this new block in the script area:

Below this you create a script by attaching existing Scratch command blocks. This is what I

created:

You now have a new procedure called “Greeting” which you can use in any script. For

example:

Procedures with inputs
The behavior of many procedures depends on how they are invoked. It depends on the input

supplied. So, can do its job only when you tell it how many steps to

move. Or, command needs to know how many seconds to wait.

Scratch allows you to define your own procedures which take input. While creating a new

procedure (as described above) if you click on “Options” you will see the following:

In this case, I am creating a new procedure called “Jump” which will take a number input, which

I have labelled as “height”. The label has no importance really, other than giving a descriptive

name to the input.

After clicking OK and attaching a script, I have a new procedure (with input) as shown below:

If I use this new procedure in a script, say, as , the sprite will jump up and

down by 100 steps.

Random numbers
Several things in real life are unpredictable. Here are just a few examples:
Pick a ball out of a bag.

Roll a dice.

Toss a coin.

Decide what to wear to a party

These acts are not completely random; they are random with constraints. The outcome in each

of the above is one of a set of possible outcomes. Coin toss involves 2 possible outcomes;

retrieving a ball from a bag depends on the number of balls; roll of a dice has 6 possible

outcomes, and so on.

Scratch offers a simple way to use randomness in programs through the following operator:

This operator returns a number from 1 to 10 – you can’t predict what it will return. You can use

any range (e.g. -100 to 100); the range can be in any order (e.g. 100 to -100); and it can even be a

decimal range (e.g. 1.5 to 11.5).

The real key is to figure out how to use this simple operator to simulate the random events that

you might want to use in your programs. For example, how would you simulate the roll of a

dice? Simple: use since there are 6 possible outcomes.

Random numbers - mapping to a set of things
Sometimes you want to pick something from a collection of things, which is not necessarily an

ordered list of numbers. For example, you want to pick a color from the set of 4 colors: green,

red, blue, and yellow. How would you do that using the random operator?

Well, the first step is to realize that the collection contains 4 items. So we should use

 to pick from 4 numbers. Next, we can map each number to a

color: so, 1 could map to red, 2 to blue, 3 to yellow, and 4 to green. Then, depending on what

pick random returned, you would know which color to pick. Here is the script to show the entire

scheme of things:

Recursion
The idea of recursion is a property of procedures. Simply stated, a recursive procedure calls

itself. For example, the following procedure is recursive:

If you call this procedure, say by using , it will draw a rectangular spiral forever;

it will never return because it will call itself indefinitely. What you will have is a program that

will run forever!

Writing a program that never terminates is interesting but not very convenient. We would like

to write recursive programs that do interesting things and terminate (i.e. stop) when their job is

done. The Scratch command will stop the currently running

procedure and return to the calling procedure. Thus, the infinite recursion will be broken.

Here is a modified recursive procedure that will not run forever:

There is another way to make recursion finite, that is, make it stop after some time. We can

simply decide how deep the recursion should go. See the modified Foo procedure below:

Relational operators (=, <, >)
These operators compare two values and return true or false, depending on whether the

comparison succeeded or failed. For example:

20 = 30 would return false

51 > -1 would return true, and so on.

These operators are typically used by conditional statements, such as, IF, Repeat until, etc.

Here is a complete example:

The “=” operator can also be used to compare strings:

Scratch UI - special features
There are several features in the Scratch UI that are not commonly used. Some of them are listed

below:

Turbo mode:
Every motion command contains a very small but finite delay. This delay actually helps in

creating smooth animation because we can break down a long jump into multiple smaller

jumps and then the series of jumps creates the impression that the sprite is moving smoothly.

For example, the script below makes the sprite turn slowly around itself.

But, this delay can be problematic for some other occasions. For example, if you are drawing a

complicated drawing, say a spiral, the number of moves is quite large and so, the cumulative

delay can make the drawing really slow. For such purposes, the delay can be (practically)

eliminated by using the turbo mode (click “Edit” and then click “Turbo mode”). Suddenly you

will notice that your drawing has become much quicker.

With turbo mode on, the following two scripts will be identical in behavior.

Sensing touch
In Scratch, you can check if things are touching each other, and use that information in the

conditional statements (such as IF, Wait until, Repeat until, etc.). Here are the sensing

conditions:

An example of how sensing can be used in a conditional statement:

Sequence
Scratch programs tell the computer precisely what to do, step-by-step. To create a program in

Scratch, you need to think systematically about the order of steps. Unlike humans, computer

programs do not change the order of the commands given to it.

For example, let’s say you were given a “To do” list as follows:

1. Get clothes from the laundry

2. Check mail in the post office box

3. Buy grocery

You may not follow this task-list exactly in the given order. You might go to the grocery shop

first, or even skip getting the mail.

Computers do not have this freedom. They would, if given the above list, follow it exactly in the

given order, one after the other, making sure every item was completed in a satisfactory manner

before going to the next item. This concept is called Sequence in computer science.

Here is an example of a Scratch script that would run the commands one by one. The color will

change at the very end of the program. The sprite will jump to the center of screen first. And so

on.

Sounds - playing sounds
One of the exciting features of Scratch is the ability to play sounds. You might have noticed that

every sprite has a tab called “Sounds”. Under this tab, you can collect a list of sounds. You can

import an existing sound from the Scratch library. You can also import your own sound file in

MP3 format. If your computer has a sound recording device, you can record a new sound using

the RECORD button.

Once you create a list of sounds for a sprite, you can play these sounds from any script of that

sprite.

Here are the sound commands that you can use to play sounds.

STAMP - creating images
The STAMP command leaves an image of the sprite on the screen. See the example below:

The STAMP command has no relation to the pen. So, to change the color of your image you

must use the “change color effect” command. See the example below:

To erase the images created by STAMP, use the CLEAR command.

Stopping scripts
The STOP commands (under the “Control” tab) allow us to stop Scratch scripts in various ways.

The “STOP all” command stops all active scripts (including the current one). For example, the

script below checks if the allotted time has been used up, and if so, it stops the game.

The command “STOP this script” stops only the current script. In the following example, a

“prize” sprite waits until it touches “pacman”. Since it has nothing else to do afterwards, it

hides and stops its script.

Finally, the command “STOP other scripts in sprite” is useful when you want to only stop

scripts of the current sprite. If you want to stop all scripts of the current sprite you would need

to do as shown in the following hypothetical script:

String operations (join, letter, length of)
A string is basically a sequence of alphanumeric letters:

The join operator allows you to concatenate two strings:

The above script asks you to type your name. If you type “George” the sprite will say “Hello

George” on the screen.

The “letter” operator lets you get an individual letter of the given string:

The above script asks you to type your name. If you type “George” the sprite will say “Your

initial is: G” on the screen.

The “length” operator tells you how many letters there are in the string:

The above script asks you to type your name. If you type “George” the sprite will say “Your

name has 6 letters”.

Synchronization using broadcasting
When you write a program that contains multiple sprites that interact with each other in some

way, you need to worry about synchronization – which basically means proper coordination of

their actions.

To understand synchronization, let us look at an example, as shown above. Here, we have two

sprites – Gobo and cat – talking with each other. If you run the program what will happen?

They both will talk at the same time! There will be no proper sequence or coordination. That’s

not what you expect, right? To make it a proper dialog, the Gobo should say “Hi” first, then, the

cat should reply by saying “Hello”, and so on.

So we say that there is no synchronization in this program. Do you now see the meaning of

synchronization?

You might have heard about the word “Broadcasting” in the context of radios and TV. When

you tune into a radio station, you are actually listening to something that was broadcast from a

radio station.

Broadcasting basically means sending a message to everyone who cares to listen. So, when

someone gives a public speech, he/she is doing broadcasting.

In Scratch broadcasting has a similar meaning. When you use the BROADCAST command,

your sprite sends a message that goes to every sprite in your program and even to the stage.

But, just like not everyone is interested in listening to the radio, not every sprite may be

interested in hearing the message. So, if a sprite is interested in receiving that message it uses

the command WHEN I RECEIVE.

WHEN I RECEIVE is an event and works just like WHEN GREEN FLAG CLICKED. When the

message is received the script underneath that event runs.

Every time the exact same message is received the script runs again.

There are two flavors of the BROADCAST command:

In the first flavor, the sending sprite sends the broadcast message and immediately goes to the

next command.

But, in the second flavor, the sending sprite sends the broadcast message and waits – it waits

until all listening sprites have received the message and completely run each of their “WHEN I

RECEIVE” scripts.

User events (keyboard)
The most interesting feature of Scratch is that it allows the user to interact with programs. Our

programs need not be just animations that one has to watch, but, they can be interactive.

Scratch provides an event block called WHEN KEY PRESSED. It works similar to the event

WHEN GREEN FLAG CLICKED. If you write a script under this event, it will run every time

the user presses the specified key.

See these examples. In game programs arrow keys are typically used to move sprites. Here, the

UP ARROW key runs a script in which the sprite moves 10 steps upwards.

In the second example, the h key makes the sprite visible for a short time – this sprite could

possibly be a “HELP” screen which pops up for a short time and then goes away.

User events (keyboard - polling)
There are two ways to get keyboard input: one is using events (also known as “interrupt

driven”), which we have already seen. The following is an event that signals a key-press and

immediately runs the script. The command block “when -- key pressed” is called an “event

handler”.

The other way is called “polling” in which the program actively checks if a particular key is

pressed.

If you want to check this continuously you must use a forever loop:

It is possible in the “polling” method that some key-presses might be missed if their timing does

not match with when the IF command checks for the key-press. Also, polling (in a Forever loop)

runs continuously taking CPU time, whereas event handlers do not take CPU time, because

they sleep and are “woken up” when the event happens. But the advantage of polling is that the

program has full control on when to handle keyboard signals. When the program stops, polling

also stops, whereas event handlers would run even if the program has stopped.

Another interesting advantage of polling is that you can combine multiple events as shown

below:

User events (mouse)
Here are the mouse event blocks that Scratch provides. You are already quite familiar with the

event WHEN GREEN FLAG CLICKED.

The other event is called WHEN THIS SPRITE CLICKED which invokes a script when you click

on that particular sprite. Imagine a button sprite, for example, that you can activate through

such a script.

In the script shown below, if you click on the bird sprite, the bird makes a “bird” sound and

says “Chirp chirp”.

There is a similar event for the stage also:

Another interesting thing you can do in Scratch is that you can make a sprite follow the mouse

pointer. The script shown below explains how this can be done. You make the sprite point

towards the pointer and then take a small step. If this is done continuously, the effect is to make

the sprite follow the mouse pointer.

In fact, the same idea can be used to make one sprite follow another sprite.

User events (mouse - polling)
Similar to keyboard interaction, mouse signals are handled in two ways: one is called events (or

“interrupt driven”) as shown below:

The other is called “polling” as shown below:

If you want to check this continuously you must use a forever loop:

Note that the condition is “mouse down” and not “mouse click”.

It is possible in the “polling” method that some mouse-downs might be missed if their timing

does not match with when the IF command checks for the mouse-down. Also, polling (in a

Forever loop) runs continuously taking CPU time, whereas event handlers do not take CPU

time, because they sleep and are “woken up” when the event occurs. But the advantage of

polling is that the program has full control on when to handle mouse signals. When the

program stops, polling also stops, whereas event handlers would run even if the program has

stopped.

Another interesting advantage of polling is that you can combine multiple events as shown

below:

User input (ASK)
Sometimes you may want to ask the user to provide some textual information. The ASK

command presents a text window and waits. The user can type his/her reply in this text

window and press ENTER. Whatever has been typed is then saved in the “ANSWER” variable.

See the script below in which the user types “25” in the text window.

Before running the script:

After running the script:

User input (buttons)
It is common to have push-buttons (or rather click-buttons) to allow users to interact with

programs. See examples below:

A click-button has the following properties:

- It is usually rectangular, oval, or circular.

- It has a label that describes what action it initiates.

- When you click on it, the specified action is performed.

To implement a click-button:

- Get a button sprite (you can use the built-in sprites or draw your own)

- Label it appropriately

- Use a “When sprite clicked” event to make the button active

Here is an example script for a “Draw” button:

When clicked, the button sprite sends a broadcast message to let everyone know that it was

clicked. The actual drawing would be drawn by some other sprite when it receives this

message.

User input validation
The ASK command allows the user to enter input, which could be words or numbers. For

example, you might ask the user to enter his/her height. It is essential to ensure that the user

enters a valid input, in this case, a valid height. Something like -50 or “abc” would not be a

valid height.

The program must have a way to validate the user input, and if it is not valid, go back and ask

again. The following example shows how this can be done:

Let’s say we ask the use for his/her age. We assume that the age cannot be less than 1 or more

than 100.

The loop continues to ask the same question until the user answers it correctly.

Variables – lists
A list variable is a type of variable that stores multiple pieces of information: words, numbers,

or sentences.

Click on “Make a List” under “Data” to create a new empty list variable, and then use the

following commands to manipulate the list.

Here is an example script that shows how the members of a list can be listed:

The following condition checks if the given item is present in the list:

Variables – numbers
As you might know already, computers have memory. They use this memory to store

information and do their work. For example, when you use a calculator to make calculations,

the computer stores the numbers you type in its memory. This memory is called “temporary

memory” because the information goes away if you shut down the computer.

And what is a variable? A variable is a location in this temporary memory, and each variable

has a name. In Scratch, you can create a variable by clicking on the button “Make a variable”.

Once you create a variable it is available to your program to store information.

If you don’t need a variable, you can delete it by right-clicking on the variable name and

selecting “delete variable”.

The word “variable” means something that can vary or change; indeed variables can contain

any value. Scratch provides commands that you can use in your scripts to store information in

variables and then change it later.

The SET command stores a value in a variable. The value can be any number – negative or

positive, whole, or decimal.

Later, you can change the value by using the command CHANGE. The CHANGE command

adds a number to the variable.

Here is an example of how variables can be used. Here we have a script for the game of maze.

We have a variable called “Bonus points”. In this script, this variable is incremented by 10 if the

packman touches the sprite – which is probably a PRIZE sprite.

Important: Always initialize number variables to some value (such as 0) at the beginning of the

program.

Variables – strings
The SET command stores a value in a variable. The value can be any number – negative or

positive, whole or decimal. The value can also be a string of characters. For example, you can

create a variable called “Name” and store the value “John Luke Pickard” in this variable.

Obviously the CHANGE command will not work for a string of characters.

Here is an example of how a string variable may be used. We have a variable called “Message”.

In that we first store the string “Hello World”. Then, the SAY command takes that string from

the variable “message” and prints it on the screen.

So, as you can see, you can use variables instead of actual values. When you refer to a variable

in your script, the value stored inside that variable is used.

String variables can be modified by the “string operators”. For more information, see the

concept “string operators”.

Variables - properties (built-in)
Scratch comes with many useful variables that provide some information about the sprites, the

program itself, or something else. We call them properties to differentiate from variables that we

create in the program.

For example, every sprite in your project has several properties; some examples are shown

below. Their names clearly indicate what type of information they contain. For example, “x

position” contains the current X coordinate of the sprite.

Properties can be used just like any other variable. For example, the command below will make

the sprite move left or right where X=0.

Scratch also provides a way for one sprite to access information about other sprites through the

following set of properties:

One big difference between your variables and properties is that properties are read-only; their

values cannot be modified directly. For example, the “x position” property will change only

when the sprite moves along the X axis.

Variables - local/global scope
When you create a variable, you get the following dialog box:

Below the name, there are two options to select from: (1) For all sprites, and (2) For this sprite

only. If you select the first option, you create a “global” variable, and if you select the second

option, you create a “local” variable.

A global variable is visible to all sprites in your project. Any sprite can set it, change it, or use it.

On the other hand, a local variable is visible only to this sprite (one in which you created it).

It is a good practice to decide the scope of each variable carefully, and make it “global” only if it

is clearly going to be used by multiple sprites. For example, the “score” variable in a “pacman”

game would be needed by multiple sprites (prizes, pacman, obstacles, etc.) so it should be

“global”.

A local variable, if displayed, uses a different notation. See below:

Variables - as counters
In the script below, the variable “count” counts the number of repetitions:

It essentially counts from 1 to 10. This is called a counter.

Counters can be used for a variety of applications. The following script, for example, draws a

squiral (a square spiral) using a counter:

Variables - as remote control
This concept is best explained through an example.

Let’s say we have a spinning wheel as shown below:

If we wanted to change the speed of this wheel, we will need to change the input of the “turn”

command. Instead of manually changing the number, we could use a variable in place of this

input:

Now, whenever the variable “speed” changes, the spinning speed will also change

immediately. So, the variable has become a “remote control” of the spinning wheel.

If you create button sprites labelled “Faster” and “Slower” with scripts as shown below, you

will see how the remote control works:

Variables - as gates
There are occasions when the user must not be allowed to start playing the game until setup is

complete. For example, let’s say your game starts when the SPACE key pressed. But, before

pressing the SPACE key the user must set a few things, for example, slider variables. We can

enforce this by using the concept of “using variables as gates”. In the example below, we will

use a variable called “setupdone” which will be False initially and True after setup is done.

Variables - as timer
The combination of variables and the WAIT command can be used to implement a timer. See

the script below:

The “time” variable is set in the beginning to whatever value you want to set for your game.

The repeat loop then decrements it a second at a time until it becomes 0.

It may be confusing to see the “time” variable getting decremented and also being used in the

REPEAT command. The REPEAT command uses its initial value (in this case 30) to decide the

number of repetitions.

A more intuitive (and less confusing) way to do this might be:

XY Geometry
We use the screen in Scratch as a geometric plane. Every point on the screen has X and Y

coordinates. You might have heard about this in your school Mathematics.

Every point on the screen has two coordinates: x and y. Imagine two number lines laid out on

the screen: one horizontally and the other vertically, both intersecting at 0. The horizontal line is

called the X axis, and the vertical line is called the Y axis. The distance of a point from the Y axis

is called the X coordinate, and the distance from the X axis is called the Y coordinate.

For example, for the blue point here its distance from the Y axis is 80, so its X coordinate is 80.

And its distance from the X axis is 120, so its Y coordinate is 120.

For the dark red point its distance from the Y axis is -200, so its X coordinate is -200. And its

distance from the X axis is 0, so its Y coordinate is 0.

Every sprite in Scratch has X Y coordinates. Each sprite has a center point which you can set in

the Paint editor. The X Y coordinates of this center point are assumed to be the X Y coordinates

of the sprite. When the sprite moves these values also change automatically.

Now that we understand what X Y coordinates are let us look at some Scratch commands that

make use of these coordinates.

The SET commands are interesting because they move the sprite to a specific point no matter

where the sprite is right now. Whereas, the CHANGE command depends on the sprite’s current

location.

For example, if you say CHANGE X by 10 the sprite will move to its right by 10 pixels. If you

run CHANGE X by 10 once more, again the sprite will move to its right by 10 pixels.

But, if you say SET X to 100, the sprite will jump to where X is 100. And if you run SET X to 100

once more, nothing will happen because the sprite is already at X = 100.

There is one important thing to note about all these commands shown here. The orientation, or,

the direction in which the sprite is facing, does not change when you use any of these

commands.

Ok, so far we have seen how to change the position of sprites, that is, how to move them from

where they are. All these commands do not affect the orientation of the sprites.

Orientation of a sprite is basically the direction in which it is facing. It is shown in terms of the

angle made with the North direction. So if a sprite is facing North its direction is 0.

Initially all sprites are facing east, which means their direction is 90. You can change a sprite’s

orientation using one of the commands shown below.

